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Several nonstationary extensions of the generalized Langevin equation describing chemical reaction dynamics
have involved a multiplicative noise term. This includes the cases of space dependent friction, time dependent
friction, and nontrivial combinations thereof through the so-called irreversible generalized Langevin equation
(iGLE). In the present work, a fourth-order numerical integration scheme that leads to dramatically reduced
computation times is shown to be applicable in all of these cases.

I. Introduction Fokker-Planck equatiofrthat is one in which the Kramers
Moyal expansion includes only the first 2 terms exacthill
not necessarily be available for all cases of the nonstationary
colored generalized Langevin equation. Even in the limiting case
of multiplicative noise that is the focus of this work and in which
such a construction is possible, a numerical procedure would
be necessary to solve the corresponding FokRanck equa-
tion in the low to moderate friction regimes. We focus, instead,
on the direct numerical integration of eq 2 using a finite
difference algorithm over an ensemble of trajectofiés.
™" The first and most common SDE to be used in physics is the
Langevin equatiot#~16 which may be written in a symplectic

Whenever a chemical process may be described classically,
the solution of Hamilton’s equations of motion formally provides
all the necessary dynamical information. However, for very large
systems, such a solution is not generally available. In such
systems, reduced-dimension@lrojective—approaches allow the
problem to be tractable, though the dynamics will no longer be
Hamiltonian. In the present work, a fast numerical algorithm is
developed for the numerical integration of reduced-dimensional
systems whose projected environment may include nonstational
responses in time or space.

Specifically, the dynamics of a generalized variaklmay

be written in a multidimensional closed differential form, form as
. 1
¥ = filx(®)]. 1) 4= api (3a)
In the case of a classical systexreduces to ald-dimensional N Vi
phase space vectoq,(p), over anN-dimensional configuration | = _a_q - Hpi + &), (3b)
l

space consisting of the coordinates of all the particles in the

system. (Within the context of classical systems, the use of a\vhere q and p are the position and momentum vectors,

generghzed space 1S u§eful insofar as th.e phase.space_ I?espectlvely, ani/(q) is the system potential. The mas$es}
sometimes extended to include nonsympletic dynamical vari- _ . .

- - will be taken to be equal to 1 throughout either because they
ables.) This mechanical system may be coupled to some larger,

system, the bath or outer reservoir, with a large number of 2 ¢ L or because the use of mass-weighted coordinates ef-
Y ' ’ 9 fectively sets them to 1. The projection of the bath onto the
degrees of freedom. These so-called bath modes may be treate ystem enters through a dissipative term, the fricfioand an
implicitly through a projection onto the space of the chosen effective random forces;, that is connected tp via the second
mechanical system. The instantaneous effects of these mOdeﬁuctuation-dissipation tlheoreﬁﬁ

are often treated statistically by drawing them from a probability ’

distribution of the actual forces, with which the equations of v,
motion take the form of a stochastic differential equation (SDE), @i(tl)gj(tz)D: Zﬁlé(tl — tz)éij 4
% =fiIx(®; 1 + g [x(®):t&), (2) wheref[= (kgT)~Y] is the inverse temperature. Assuming that

heref. is the deterministic “drift” part of th tiom  is th the higher-order cumulants are zero and that the noise has no
WRErEl; 1S the deterministic “drift™ part of the motiory 1S the correlation in time, the noise ternm can be taken from a

“diffusion matrix,” and¢; are Gaussian random forces whose Gaussian random distribution. This distribution is commonly

variance depéend_s or: macroscopic ba:]h observat_mles, €9, terlnr'eferred to as white noise because its spectral density is a
geratulre gr ensny. ”n n:any lelses’.t ese eql;attlons maybclnn Yconstant. Though seemingly easy to integrate using a numerical
€ so Vi r_]u_?:]e”f?a Y, r}:pllczakidglsmgk one o hV_VO ph(?sﬁ' € finite difference scheme, the nondifferentiable nature of the
approaches: Thefirstis the Fo ank approactijn whic Gaussian white noise leads to convergence problems. This can
a partial dlffer(_antlal equation for the probability is derived from be rigorously resolved by choosing a consistent integration
the SDE. This approach is not pursued here because thescheme such as that in the Stratanovich or Ito calculus.

T Part of the special issue “William H. Miller Festschrift”. ThrothQUt t.hI'S work, we Shgll elther u.se th.e Stratanovich
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The latter case occurs, for example, when the random force calculus. In a variety of examples, described in sections Il and
is correlated in time with the physical interpretation that the IIl, the numerical calculations are much faster and can be
bath has a memory of its past configurations. This correlation performed to a higher degree of accuracy for colored noise than
is intuitively (physically) necessary for short times, and its for white noise. In section lll, the fourth-order algorithm for
cumulative effects have been seen in real systems at longerthe time dependent iGLE with an exponential friction kernel is
times!8-21 When memory effects are included within eq 2, the introduced. In section IV, the algorithm is developed and
generalized Langevin equation (GLE) is obtained. In the one- examined for the space dependent case, thereby showing that
dimensional case, this stochastic integro-differential equation is applicable for both space- and time- dependent multiplicative

may be written as noise with the iGLE.
p=—-V(a) — [Udt yo(t — )p(t) + Ext), (5) Il. Numerical Integration of the SDE
where the random forc&y(t) is correlated in time according to The numerical integration of the GLE in eq 5 may be
a stationary friction kernejo(ts — t2) through the fluctuation  accomplished through the use of a finite-difference scheme
dissipation theorem, based on the Taylor expansion of the corresponding SDE in eq
2 up to some minimum time step\t.234 In the solution of
[&o(t)Eo(t) = 17’0(':1 —t,). (6) ordinary diffential equations, variants of this approach are the
B multistep, RungeKutta, implicit, and explicit method¥ In

this section, a one-step collocation method is shown to be
particularly useful in solving the SDE!3

Integrating eq 2 over a time stéyrelative to some arbitrary
origin in time, 0, gives the position step of ti&coordinate as

There is a price for the increased complexity of this more
realistic description: The GLE includes an integral of the past
trajectory’s momentum over a nonlocal friction kernel. Its

numerical calculation generally entails larger computational
demands both in memory (to retain the trajectories) and in time h h
(to integrate over the past trajectories at each time step.) Buto%(h) =x(h) —x(0)= [ ds fx(9] + [, ds gIx(9)]&(S).
its integration is well conditioned as the random forces are (7)
differentiable.

The LE and the GLE are additive SDEs. i.e.. the diffusion A Taylor expansion of the integrands of this expression with

term does not depend on the system coordinates. The require-rESpeCt to the coordinates provides an estimate of the position

ment of stationarity further limits these models to systems where St€P:

the system dynamics do not influence the behavior of its

thermally equilibrated bath. However, there are a variety of h 1

processes where the GLE must include nonstationary terms,0x(h) = fo ds[fi0 + fﬁxk Ox(s) + Efkaxm OX(9)0X(s) + ]
e.g., polymerizations in dense or inhomogeneous environ-

ments2-24 or in the of explicitly time-dependent diffusion + foh dst; [gio + gsxk Ox(s) + %gkaxm 0% (90x(s) +
coefficients in rocking ratche:26 The former example has 1

been described with the use of the irreversible GLE (iGt22). —C . OXAS)OX()OX(S) + ] 8
The GLE with space-dependent frictidn®® has also recently 3100 P (0% (9 ®

come into wide use in describing nonequilibrium dynamical 0 0 . o
phenomena, e.g., the dynamics of particles in environments withwheref;, , andg;,, denote partial derivatives at= 0 of
fluctuating barrier? activated rate process¥&the thermal  the corresponding functions with respect to the coordinates,
relaxation with nontrivial bath system couplid&23 polymer {X %, ..}. At orderN, this expansion may be rearrangeds
dynamics?®* and the mobility in spatially inhomogeneous
systems$*35 Because the iGLE includes the GLE with space- Ny N i)
dependent friction in one limit, all of these SDEs will be referred X (h) = Z 0%~ (h), ©)
to as iGLEs in this article. =1

As is the case with the GLE, the direct integration of the
iGLE may be slow. This numerical ineffeciency may be .
circumver)llted by taking advantage of the multiplic);tive );loise h andx,-N IS accurate to ordem. T_he lowest-order ternix .
structure in the iGLE and converting it into an SDE of the form the solution of the expansion in eq 8 cutoff to lowest order in
of eq 2 albeit over a larger dimensional space. In doing so, M- In @ given iterative step, the next order term_g“), Is
however, the uncorrelated random force now reintroduces the OPtained by inserting the lower-order terfias ()} for j' less
ambiguity in the quadrature due to the discontinuous random thanj, into the sum on the LHS with the RHS expansion
forces. Although integration schemes for the Stratanovich or truncated at the next order in The terms in the resulting
Ito calculus resolving this problem are known, they either have €xpansion, to ordeN, may be written explicitly as
a lower order of accuraéyr contain a cumbersome structére.

where the variance of each term is a polynomial of ojtié@r
(1/2)
is

In this work, a fast numerical integration scheme for the SDE oxM2(h) = ¢ j;)h dsz(s) (10a)

is shown to be generalizable to those SDEs that correspond to

the iIGLE, namely with space- and/or time-dependent multiplica- 6)(1-(1)(h) = + gQ fh dss (9) 5)(1((1/2)(5) (10b)
i ix Jo i

tive noise, wherein the stationary component of the memory is

exponentially decaying. This method is advantageous because, ), _ L £0 h 0

it is convergent to fourth order using a small and finite set of ox;(h) = | Z %CX(I) fi,><(l) /; ds |_| Xy (5)

terms. It also resolves the ambiguity in the stochastic integration S-ax N m

insofar as the numerical integrations give the same results to + Z Cyay * O ﬁ) dssi(s) |_| ox{™(s), (10c)
fourth order regardless of the choice of Stratanovich or Ito 18 ox{T m
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whereQy is the space of vectol§={l, I, ..}] with arbitrary 1 _
dimensionality whose elements are in the set of half integers [Eo(t)So(t) = ﬁyo(ti t).
satisfying the property,

17

andg(t) is a time-dependent function describing the evolution
ZI' =k (11) of the coupling to the system’s environment due to the collective
= motion of the closed environment or some outside forces in an
open environment. The iGLE is specified with a choiceygf
x(l) is a vector with the same dimensionality lathat has the a natural choice ofy is exponentially decaying in the time
variables of the SDE as the entries, the inner summation sumsdifference, i.e.,
over all possible combinations of(l), fixi) is the partial
derivative off; with respect to the coordinates in the vect(r) volty — ) = yO(O)e"tl"z"T, (18)
andCyqy is a combinatorial factor from the Taylor expansion.
The sum includes all the combinationsifi). The new feature ~ wherey(0) is the instantaneous friction strength, ani$ the
that has been introduced to resolve the definition of the correlation time of the response. This form has the advantage

stochastic integration is the infinitesimal integral, that &y(t) is the solution of an Ornstein process, i.e.,
h : 1
23 = o 459 (12) Eo0) = — JEo+ &), (19)
If &i(s) is Gaussian distributed, thefi; will also be Gaussian  where&g(t) is an uncorrelated Gaussian random number with
distributed with the correlation relation, the second moment
[Z,,(t)Z, (L) = (@)% o(t, — ty)h. 13 27,0
1i(t)Z;() 0= (@)° 0(t, — 1) (13) 20 yﬁi ) 20)
Its contribution to the expansion is of order afh'’?) as may
be readily obtained.The higher order terms itix(h) may be In previous work, the auxiliary equation f&(t) has been treated
written in terms of a new set of Gaussian stochastic variables on a different footing then the iGLE with the use of a multiple-
Z;i(h) defined recursively as time step schem&:23This approach has had the advantage that
the algorithm is presumably generalizable to arbitrary forms of
h .
Z.(h)= /; ds Z;_)(9) (14) o, and it ensures that the random forces are properly correlated.

However, within the restriction of the exponential memory
For convenience, the solution of eq 9 is separated into akernel of eq .18' awell-known auxiliary equation r_nay.be used
deterministic and,a stochastic, random, part instead that is also better suited to the fast numerical integrator

described in the previous section. Introducing the auxiliary
iable,
X(h) = X ge) + Xiran(h), (15) ~ Variable

_ t ' 1 r
according to the simple rule that the stochastic part consists of Z=- f dt g(t)yo(t — t)p(t) + &o(t), (21)

all terms containing a random forcg;;(h). The correlation of . . .
these stochastic variablgg(h) is Gaussian, as is shown in Refs the iIGLE of eq 16 may be rewritten in the fofth,

8 and 13. Other noise terms, which are not necessarily Gaussian, q=p (22a)

do appear in the iterative expansion, but these cancel in the

cases to be discussed below. p=-V(aq) + g(t)z (22b)
In the Langevin equation, the resulting expansion contains z

few terms because of the equation of motion has a symplectic Z=-7" 70(0)9(®P + &6, (22¢)

structure, and the diffusion matrix is a constant. The last sum

in eq 10c has all but the zeroth order term cancel to zero. All where&g is an uncorrelated Gaussian random number as before.
terms where the index of the random teZjth) is odd or where ~ The ensemble averages over trajectories on this extended space
oy includes more than one ever in the first term also cancel  requires an average over initial conditions. The positions will
to zero. The final result includes the deterministic expansion be specified below. The momenta are chosen from a Boltzmann
of the equation of motion with an additional Gaussian variable distribution. The auxiliary variable0) is chosen according to
for each additional order in the expansion. (The exact structure an auxiliary Boltzmann distribution that is a Gaussian distribu-
of the terms may be found in Ref 13). The following sections tion with second moment determined by

will examine the generalization of the algorithm to include larger

classes of physical problems where the structure is not sym- Z(0)= 1}/0(0). (23)
plectic and the diffusion matrix depends on either time or space B

coordinates. The equations of motion over the extended space, eq 22, may

be Taylor expanded as in the previous section in order to express
them in the form necessary for the fast numerical integrator.
A. Formalism. A special family of problems that can be Because of the time dependencegit), the Taylor expansion
solved using the high-order scheme is the iGLE, must now also include time derivatives. This results in several
additional terms. Nonetheless, the compact structure of eq 22
p=-V(q) — f t dtg(t)g(t)yo(t — t)p(t) + g()&y(t), (16) substantially reduces the number of nontrivial terms. In par-
ticular, all terms that would result in non-Gaussian correlations,
where &y is a random force connected to the friction by the including the functional of the random noise, vanish at each
fluctuation dissipation relation, order in the expansion. The terms which do contribute and which

Ill. Time-Dependent Multiplicative Friction
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did not appear in the earlier expansion of nonstationary SDEs

have the general form, 0.4
N 0 h . 0.2
[{f i Jo attz™y, (24)
=1 0.0
wherej is a dummy index labeling the terms, ar@l) is a = -02 |
corresponding vector defined as in the previous section. Since W
the expression inside the integral is composed of multiplication -04 }
of a Gaussian term with a smooth deterministic function, there
is no dependence on the type of the stochastic integral; hence, -06
this integral can be solved in standard fashion using integration
by parts? -0.8 t
Collecting all the terms of the Taylor expansion up to the
fourth order inh gives, as in eq 15, a deterministic part in which 0.0 100 20.0 30.0

no stochastic terms appear and a stochastic part which includes
four Gaussian random noise terms of known form. The

stochastic contribution to each variable is Figure 1. Energy relaxation in a double-well potential with exponential

stationary friction kernel and nonstationary modulatiorgiset to a

9 switching function. The ensemble averages involve 5000 trajectories
Oran = (9o + N0 Zs — (290 + _0)24 (25a) all starting from the barrier. The parameters of the simulationy age
ran T =0y%,=10,7y= 1,8 =10,y = 1,7 = 1. The Euler integration of
1 9 9 the SDE with step sizes df = 0.001,h = 0.01, andh = 0.2 are
— o 0 0 A displayed as a solid, short-dashed and dotted curve, respectively. These
=gy + Gh+ 28| Z,— [=+ g+ =h+ 8| Z play : , respectively
Pran (90 % 2go ) 2 (t % T Y% ) s are compared to the long-dashed curve, which is the result of integration

g 9 of the SDE with the time-dependent fourth-order algorithm. As can be
0 o .. i ;
V'ag. + 2_H_H_ 7. (2 seen, both methods converge for small enough step sizes for long time
( %o+ 7o(0)0 go) 4 (25b) to the equipartition value.

1 within the iGLE in eq 25c. This switching function has been
76(0)g5 — = 1 2y6(0)g0%h0| Zs used in Ref 22 to describe a smooth change in the environment
T from steady-state behavior at times far in the past (~«) to
g% 1 a different steady-state behavior at times far in the future
2y(0) T 3 + 3Vo(0)gogo) Z,. (25¢) (t — +o0) due to a change in the system and solvent interaction.
T The transition fromg(—o) to g(«) takes place over a finite

Performing the Taylor expansion gives an additional non- fransition time.zy. The energy relaxation of a particle starting

1
Zan= Zl - ;ZZ -

+

Gaussian random noise term to the ordehbbf the form, from the barrier of the double-well potential has been integrated
using both the usual Euler methodnd the fourth-order
9(@9(q) fh dtZ,(t)Z,(t) (26) algorithm of this work. As shown in Figure 1, for small time
0 A

steps, both methods relax to equipartition similarly. Figure 1
also presents the step sizes for which each of the methods
experiences a breakdown. It can be seen that the fourth-order
method remains accurate for step sizes a few orders of
magnitude larger than that of the Euler method. The fourth-
order algorithm is accurate up to a step sizé ef 0.2, whereas
the Euler method loses accuracy for step sizes largerhilan
0.001.

A second model for the nonstationary friction behavior in a
double-well potential is that in which tiggt) is represented by
a power law in timeg O t*. Such a form can be given a physical
?hterpretation. It has earlier been suggested that

In the underdamped regime, the contribution of this term is
smaller than the other deterministic variables by a factoi/6f
Hence the algorithm may safely be considered to be better than
third order in accuracy regardless of the friction strength, and
it will be referred to loosely as (a weakly) fourth-order method.
B. Nonstationary Dynamics on the Double-Well.The
efficiency of the fast numerical algorithm has been explored
through the study of the energy relaxation of various systems
to its equipartition value. The limiting behavior is expected for
the time-dependent and space-dependent iGLE because th
Boltzmann distribution is a steady-state solution of the corre-
sponding GLE® In particular, for the LE, the relaxation is
known to behave as a single exponentiihe same result has

quadratic coupling and low frictiof®.It is, however, not obvious is a characteristic growth scaling expon&hThis growth

g O X4, (29)

how the energy will relax in the time dependent problem. may be further related to time through a scaling function,
To explore the accuracy and feasibility of the fourth-order
algorithm, we first study the energy relaxation in the double- X4 Ot (30)
well potential,
during an unquenched growth regime. Combining these scaling
V() = q* — 207, (27) relations, provides the result,
for a g(t) represented by a switching function, g0 £ (31)

0()? = g(—) + 2[0°() — g*(—)]

tanhzt_ , (28) for the characteristic growth iX(during an intermediate growth
T regime. To avoid the nondissipative regimes at —, the
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Figure 2. Energy relaxation in a double-well potential with exponential  Figure 3. Time-dependent reaction rates for the transition in a double
stationary friction kernel and nonstationary modulatiorgiset to a well from the right to left well at parameters as in Figure 2, but with
power law in time,g(t) = (1 + t)* The ensemble averages involve the nonstaionary part now equald@) = .(0001+ at)*. The numerical

10 000 trajectories all starting from the barrier. The parameterg§ are integration is performed with 2 500 000 particles starting from the right
=5, y40) = 1.0, andr = 3. The integration step size in the fourth- ~ well at thermal equilibrium withf = 5,a = 0.3,y.(0) = 1.0, andr =

order integrator i$1 = 0.025. The solid, dotted, and dashed curve are 3. The solid, dotted, and dashed curve are the results obtained for the

the results obtained for the scaling exponergqual to 0.25, 0.5, and ~ scaling exponent. equal to 0.25, 0.5, and 1.0, respectively. Conver-
1.0, respectively. gence has been achieved with step sizes of 0.25 in the first two cases
and 0.01 in the thid case.

nonstationary time dependence in the random force is taken to
be demands much longer integration time than the reactive flux
method but it is feasible because of the efficiency of the fast
at) = (1 + 1% (32) fourth-order integrator. The rates for this process with various
power law friction strengths are presented in Figure 3. As can
for time t greater than zero and one otherwise. The scaling pe seen, the reaction rates follow the well-known turnover

exponents are taken from the set: € {.25, .5, }. Figure 2 picture®®40 but with an additional dependency on time.
displays the average energy relaxation of an ensemble of
trajectories started at the barrier. o

As can be seen, the system always reaches equipartition. FofV- Space-Dependent Friction
strong friction, the nature of the relaxation is far from . ) L
exponential. This is an outcome of the fact that kinetic energy A Formalism. A second class of nonstationary friction -
relaxation is much faster than the potential energy relaxation, K€Mels that can be solved using the high-order scheme of this
whereas the latter is slow when the diffusion process is slow. WOrK is that of the iGLE with space-dependent friction,

Given that the fourth-order integrator is accurate for the iGLE,
it can be used to obtain_other observables_ for nonstationaryp =-V(q) — f‘ dt'g(a®))g(at))y(t — t)p(t) +
reactive systems. In particular, the calculation of the rates of
time-dependent reactions or diffusion in time-dependent envi- 9(a())So(). (35)
ronments are of current general interest. As a concrete example,
the escape rates in the double-well potential of eq 27 will be The use of an exponential friction kernel fgg as in eq 18
calculated for the nonstationary time dependence in the randomallows for the transformation of this system to an extended space
force, in analogy to the construction of eq 22. The equations of motion

in this extended space &fe

g(t) = (.0001+ at)*. (33)
A t lytical f8ifor th ti t ist a=p (362)
n accurate analytical expressiSifor the reactive rates exis s
for the (stationary and local) 1D LE and it has been used p=-V(a + 9z (36D)
successfull§® on the double-well potential. With the inclusion .z
of the time dependence in the friction, the reactive flux is no Z=- T 7o(0)9(@a + e (36¢)

longer constant and cannot be found with the known analytical

solutions. Furthermore, because the friction strength changeswheregs andz are correlated as in eqs 20 and 23, respectively.
in time, the conventional reactive flux metd not applicable.  This construction has effectively transfered the iGLE into a
Thus, the only way to calculate the reactive flux is the direct simpler set of three SDEs with additive noise. Such a trick can
integration of an ensemble of particles starting from equilibrium pe performed on any iGLE with colored (multiplicative) noise

in one of the wells and finding the rate with the relation, in which the stationary memory kernel can be decomposed into
a sum of exponents. As this includes a large number of problems
K(t) = 1 din,—ny) (34) of physical interest, the method is in fact more general than it

n,—n, dat ’ may have initially appeared.

After some algebra, the stochastic part of the integrated
at the so-called saddle tim&s*2 Of course, this method variables is obtained:
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. Y% 0.2
Oran = (go + h%pO)ZQ - Zgop + 7 ZA (37a)
, 1.\ % 0.0 |y |
Pan= ’90 + Gooh + 55(—Vo T Goh” + Shz] Z \
D 1., L 2 0.2 )
|7 + goPo t o JoPoh + 9o(Vo — 9oZo)h + dooh|Zs ;Jt,\
-04 . i
G 9b
—[go o008~ (Vo ~ 0o gb'pé] Z,
_06 L
(37b)
=2, 27, |y — L + 27,(0)epoh|Zs 08 ” ‘ —
Fan™ 417 742~ VolP)o ™ 5 T <Yl 0)3olo 00 100 200 300 400  50.0
vo® , 1 \
+ 12 gé -5t 3y4(0)9,90P0| Zs- (37C) Figure 4. Energy relaxation in a double-well potential with exponential
T T stationary friction kernel and a nonstationary modulationy ithat is

explicitly space-dependent. The numerical integration is performed with

While there seems to be an inflation in the number of terms as an initial nonequilibrium distribution of 5000 trajectories localized at
compared to eq 25, most of the terms have a similar structurethe barrier with thermalized momenta according fo= 5. (The
and allow for economic algorithmic programming. remaining parameters age= 3, 7 = 1 ande = 0.001.) The dashed

B. Nonstationary Dynamics with Periodic Space Depen- curve is the average r_elaxatlon obtalnz_ad using the Euler method_wnh
dence.As before, the system dynamics may be modeled through ztsﬁﬁgslf]?fzs?gggrﬁﬁ’n:hﬁitﬁogezugfe: éh(e)sresult of the integration
the use of a double-well potential. However, instead of using a o
time-dependerg-function, in this case we use a space-dependent 1.00
one. In particular, we use a periodic form,

g(q) = sir’ (gq) +e, (38) 0.90

with the stationary part given by the exponential friction as 0.80
required by the assumptions above. The frequency of the space-
depence has been taken here to match the short-ranged periodic- €

ity of the double-well insofar as the system will experience 0.70
maximal friction in the potential well and minimal friction at

the barrier. This assumption is physically realizable when the
confinement effects of the barrier influence the dynarfidin 0.60
future work, we will explore the resonance behavior as a

function of different frequencies in the periodic friction.) The

relaxation of particles from an initial nonequilibrium distribution 0-500 o 2‘0 40 6‘0 8.0
at the barrier has been obtained using both the usual Euler ' ' : ' '
method and the fourth-order algorithm of this work. As may

be seen in Figure 4, both approaches are in gOOd agreemen ¢ for the example in the text. The average current is obtained for an
although the fourth-order algorithm is Subs.tan.tlally faster.l initial nonequilibrium distribution of 5000 particles localized at the
An alternate model for the system dynamics is that of a tilted parrier with thermalized momenta accordingte= 1. (The remaining
washboard potential, i.e., a sum of a periodic function and a parameters ard = 0.5, ¢ = 0.1 andf = 1.5.) The integration is
linear function in position. This potential has been used in our performed for large enough times that the current goes to an average
group to model polymerization dynamics in the context of the plateau value. The time step is taken totbe 0.025 fory = 0.2 and
space- and time-dependent nonstation&#f}It has also been 7 = 5 (represented by diamonds and circles, respectively)hard
studied by Dan et & to model the mobility in spatially ~ 0-01 fory = 15 (represented by squares).
inhomogeneous systems in the context of periodic space-their |ocal friction for the stationary part to be the exponential
dependent friction to examine and describe the stochasticfriction with = 0.1. For the potential,
resonances in the drift velocity. In this case, the friction is

tFigure 5. The modified currentp = y[plas a function of the phase

explicitly taken to be proportional to the periodic component V(q) = — cosq) + Fa, (40)
of the potential with a specified phase delay. Dan &t aAlave o o .
obtained an analytical expression for the mobility, the explicit form of the modulation in the nonstationary space
dependence in the random nois(g) = [1 — 4 cos@ + ¢)].
[do/dtl] Using the space-dependent integrator of eq 37c, we have
“T F (39) calculated the normalized mobility = yu at several friction

strengths as a function of the phase are shown in Figure 5. This
in the strong friction limit, where the GLE reduces to the normalized mobility does not depend on the friction strength.
Smoluchowski equation, and found it to depend strongly on the In the overdamped case, we can see a strong dependence on
phase delay between the friction and the potential. To make the phase with a structure similar to the case presented in Ref
use of the fourth-order algorithm of this work, we first generalize 34. There are only minor differences between the casgs-of
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5 and y = 15, reflecting the degeneracy of the Langevin converged numerical results for this class of self-consistent
equation to the Smoluchowski equation in the overdamped iGLE’s.

regime. For the case ¢f= 0.2, the friction is weak enough so

that the problem can no longer be solved with the analytical ~ Acknowledgment. This work has been supported by a
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