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Several nonstationary extensions of the generalized Langevin equation describing chemical reaction dynamics
have involved a multiplicative noise term. This includes the cases of space dependent friction, time dependent
friction, and nontrivial combinations thereof through the so-called irreversible generalized Langevin equation
(iGLE). In the present work, a fourth-order numerical integration scheme that leads to dramatically reduced
computation times is shown to be applicable in all of these cases.

I. Introduction

Whenever a chemical process may be described classically,
the solution of Hamilton’s equations of motion formally provides
all the necessary dynamical information. However, for very large
systems, such a solution is not generally available. In such
systems, reduced-dimensionalsprojectivesapproaches allow the
problem to be tractable, though the dynamics will no longer be
Hamiltonian. In the present work, a fast numerical algorithm is
developed for the numerical integration of reduced-dimensional
systems whose projected environment may include nonstationary
responses in time or space.

Specifically, the dynamics of a generalized variablex may
be written in a multidimensional closed differential form,

In the case of a classical system,x reduces to a 2N-dimensional
phase space vector, (q, p), over anN-dimensional configuration
space consisting of the coordinates of all the particles in the
system. (Within the context of classical systems, the use of a
generalized space is useful insofar as the phase space is
sometimes extended to include nonsympletic dynamical vari-
ables.) This mechanical system may be coupled to some larger
system, the bath or outer reservoir, with a large number of
degrees of freedom. These so-called bath modes may be treated
implicitly through a projection onto the space of the chosen
mechanical system. The instantaneous effects of these modes
are often treated statistically by drawing them from a probability
distribution of the actual forces, with which the equations of
motion take the form of a stochastic differential equation (SDE),

wherefi is the deterministic “drift” part of the motion,gi,j is the
“diffusion matrix,” andêj are Gaussian random forces whose
variance depends on macroscopic bath observables, e.g., tem-
perature or density. In many cases, these equations may only
be solved numerically, typically using one of two possible
approaches: The first is the Fokker-Plank approach,1 in which
a partial differential equation for the probability is derived from
the SDE. This approach is not pursued here because the

Fokker-Planck equationsthat is one in which the Kramers-
Moyal expansion includes only the first 2 terms exactlyswill
not necessarily be available for all cases of the nonstationary
colored generalized Langevin equation. Even in the limiting case
of multiplicative noise that is the focus of this work and in which
such a construction is possible, a numerical procedure would
be necessary to solve the corresponding Fokker-Planck equa-
tion in the low to moderate friction regimes. We focus, instead,
on the direct numerical integration of eq 2 using a finite
difference algorithm over an ensemble of trajectories.2-13

The first and most common SDE to be used in physics is the
Langevin equation14-16 which may be written in a symplectic
form as

where q and p are the position and momentum vectors,
respectively, andV(q) is the system potential. The masses{mi}
will be taken to be equal to 1 throughout either because they
are 1 or because the use of mass-weighted coordinates ef-
fectively sets them to 1. The projection of the bath onto the
system enters through a dissipative term, the frictionγ, and an
effective random force,êi, that is connected toγ via the second
fluctuation-dissipation theorem,17

whereâ[≡ (kBT)-1] is the inverse temperature. Assuming that
the higher-order cumulants are zero and that the noise has no
correlation in time, the noise termsêi can be taken from a
Gaussian random distribution. This distribution is commonly
referred to as white noise because its spectral density is a
constant. Though seemingly easy to integrate using a numerical
finite difference scheme, the nondifferentiable nature of the
Gaussian white noise leads to convergence problems. This can
be rigorously resolved by choosing a consistent integration
scheme such as that in the Stratanovich or Ito calculus.2

Throughout this work, we shall either use the Stratanovich
calculus implicitly and/or work in regimes in which the results
between the two do not differ.1
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∂V(q)
∂qi
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〈êi(t1)êj(t2)〉 ) 2
γi

â
δ(t1 - t2)δij (4)

x̆i ) fi[x(t)]. (1)

x̆i ) fi[x(t); t] + gi,j[x(t);t]êj(t), (2)
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The latter case occurs, for example, when the random force
is correlated in time with the physical interpretation that the
bath has a memory of its past configurations. This correlation
is intuitively (physically) necessary for short times, and its
cumulative effects have been seen in real systems at longer
times.18-21 When memory effects are included within eq 2, the
generalized Langevin equation (GLE) is obtained. In the one-
dimensional case, this stochastic integro-differential equation
may be written as

where the random forceê0(t) is correlated in time according to
a stationary friction kernelγ0(t1 - t2) through the fluctuation
dissipation theorem,

There is a price for the increased complexity of this more
realistic description: The GLE includes an integral of the past
trajectory’s momentum over a nonlocal friction kernel. Its
numerical calculation generally entails larger computational
demands both in memory (to retain the trajectories) and in time
(to integrate over the past trajectories at each time step.) But
its integration is well conditioned as the random forces are
differentiable.

The LE and the GLE are additive SDEs, i.e., the diffusion
term does not depend on the system coordinates. The require-
ment of stationarity further limits these models to systems where
the system dynamics do not influence the behavior of its
thermally equilibrated bath. However, there are a variety of
processes where the GLE must include nonstationary terms,
e.g., polymerizations in dense or inhomogeneous environ-
ments22-24 or in the of explicitly time-dependent diffusion
coefficients in rocking ratchets.25,26 The former example has
been described with the use of the irreversible GLE (iGLE).22,27

The GLE with space-dependent friction28-30 has also recently
come into wide use in describing nonequilibrium dynamical
phenomena, e.g., the dynamics of particles in environments with
fluctuating barriers,32 activated rate processes,32 the thermal
relaxation with nontrivial bath system coupling,28,33 polymer
dynamics,24 and the mobility in spatially inhomogeneous
systems.34,35 Because the iGLE includes the GLE with space-
dependent friction in one limit, all of these SDEs will be referred
to as iGLEs in this article.

As is the case with the GLE, the direct integration of the
iGLE may be slow. This numerical ineffeciency may be
circumvented by taking advantage of the multiplicative noise
structure in the iGLE and converting it into an SDE of the form
of eq 2 albeit over a larger dimensional space. In doing so,
however, the uncorrelated random force now reintroduces the
ambiguity in the quadrature due to the discontinuous random
forces. Although integration schemes for the Stratanovich or
Ito calculus resolving this problem are known, they either have
a lower order of accuracy2 or contain a cumbersome structure.6

In this work, a fast numerical integration scheme for the SDE13

is shown to be generalizable to those SDEs that correspond to
the iGLE, namely with space- and/or time-dependent multiplica-
tive noise, wherein the stationary component of the memory is
exponentially decaying. This method is advantageous because
it is convergent to fourth order using a small and finite set of
terms. It also resolves the ambiguity in the stochastic integration
insofar as the numerical integrations give the same results to
fourth order regardless of the choice of Stratanovich or Ito

calculus. In a variety of examples, described in sections II and
III, the numerical calculations are much faster and can be
performed to a higher degree of accuracy for colored noise than
for white noise. In section III, the fourth-order algorithm for
the time dependent iGLE with an exponential friction kernel is
introduced. In section IV, the algorithm is developed and
examined for the space dependent case, thereby showing that
is applicable for both space- and time- dependent multiplicative
noise with the iGLE.

II. Numerical Integration of the SDE

The numerical integration of the GLE in eq 5 may be
accomplished through the use of a finite-difference scheme
based on the Taylor expansion of the corresponding SDE in eq
2 up to some minimum time step,∆t.2,3,4 In the solution of
ordinary diffential equations, variants of this approach are the
multistep, Runge-Kutta, implicit, and explicit methods.36 In
this section, a one-step collocation method is shown to be
particularly useful in solving the SDE.5,13

Integrating eq 2 over a time steph relative to some arbitrary
origin in time, 0, gives the position step of theith coordinate as

A Taylor expansion of the integrands of this expression with
respect to the coordinates provides an estimate of the position
step,

wherefi,xkxl,...
0 andgi,xkxl,...

0 denote partial derivatives att ) 0 of
the corresponding functions with respect to the coordinates,
{xk, xl, ...}. At orderN, this expansion may be rearranged13 as

where the variance of each term is a polynomial of orderj′ in
h andxi

N is accurate to orderN. The lowest-order termδxi
(1/2) is

the solution of the expansion in eq 8 cutoff to lowest order in
h. In a given iterative step, the next order term,δxi

(j), is
obtained by inserting the lower-order terms,{δxi

(j′)} for j′ less
than j, into the sum on the LHS with the RHS expansion
truncated at the next order inh. The terms in the resulting
expansion, to orderN, may be written explicitly as

p̆ ) -V′(q) - ∫t dt′ γ0(t - t′)p(t′) + ê0(t), (5)

〈ê0(t1)ê0(t2)〉 ) 1
â

γ0(t1 - t2). (6)

δxi(h) ≡ xi(h) - xi(0) ) ∫0

h
ds fi[x(s)] + ∫0

h
ds gi[x(s)]êi(s).

(7)

δxi(h) ) ∫0

h
ds [fi0 + fi,xk

0 δxk(s) + 1
2
fi,xkxm

0 δxk(s)δxm(s) + ...]
+ ∫0

h
dsêi [gi

0 + gi,xk

0 δxk(s) + 1
2
gi,xkxm

0 δxk(s)δxm(s) +

1
3!

gi,xkxmxl

0 δxk(s)δxm(s)δxl(s) + ...], (8)

xi
N(h) ) ∑

j′ ) 1

N

δxi
(j′/2)(h), (9)

δxi
(1/2)(h) ) gi

0 ∫0

h
dsêi(s) (10a)

δxi
(1)(h) ) fi

0h + gi,xk

0 ∫0

h
dsêi(s) δxk

(1/2)(s) (10b)

δxi
(j)(h) ) ∑

I∈Ωj-1

∑
x(I )

Cx(I ) ‚ f i,x(I )
0 ∫0

h
ds∏

m

δxm
(Im)(s)

+ ∑
I∈Ωj-1/2

∑
x(I )

Cx(I ) ‚ gi,x(I )
0 ∫0

h
dsêi(s) ∏

m

δxm
(Im)(s), (10c)
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whereΩk is the space of vectorsI [≡{I1, I2, ...}] with arbitrary
dimensionality whose elements are in the set of half integers
satisfying the property,

x(I ) is a vector with the same dimensionality asI that has the
variables of the SDE as the entries, the inner summation sums
over all possible combinations ofx(I ), fi,x(I ) is the partial
derivative offj with respect to the coordinates in the vectorx(I )
andCx(I ) is a combinatorial factor from the Taylor expansion.
The sum includes all the combinations inx(I ). The new feature
that has been introduced to resolve the definition of the
stochastic integration is the infinitesimal integral,

If êi(s) is Gaussian distributed, thenZ1,i will also be Gaussian
distributed with the correlation relation,

Its contribution to the expansion is of order ofo(h1/2) as may
be readily obtained.2 The higher order terms inδx(h) may be
written in terms of a new set of Gaussian stochastic variables
Zj,i(h) defined recursively as

For convenience, the solution of eq 9 is separated into a
deterministic and a stochastic, random, part,

according to the simple rule that the stochastic part consists of
all terms containing a random force,Zj,i(h). The correlation of
these stochastic variablesZj,i(h) is Gaussian, as is shown in Refs
8 and 13. Other noise terms, which are not necessarily Gaussian,
do appear in the iterative expansion, but these cancel in the
cases to be discussed below.

In the Langevin equation, the resulting expansion contains
few terms because of the equation of motion has a symplectic
structure, and the diffusion matrix is a constant. The last sum
in eq 10c has all but the zeroth order term cancel to zero. All
terms where the index of the random termZj(h) is odd or where
RI includes more than one evenRn in the first term also cancel
to zero. The final result includes the deterministic expansion
of the equation of motion with an additional Gaussian variable
for each additional order in the expansion. (The exact structure
of the terms may be found in Ref 13). The following sections
will examine the generalization of the algorithm to include larger
classes of physical problems where the structure is not sym-
plectic and the diffusion matrix depends on either time or space
coordinates.

III. Time-Dependent Multiplicative Friction

A. Formalism. A special family of problems that can be
solved using the high-order scheme is the iGLE,

where ê0 is a random force connected to the friction by the
fluctuation dissipation relation,

andg(t) is a time-dependent function describing the evolution
of the coupling to the system’s environment due to the collective
motion of the closed environment or some outside forces in an
open environment. The iGLE is specified with a choice ofγ0;
a natural choice ofγ0 is exponentially decaying in the time
difference, i.e.,

whereγ0(0) is the instantaneous friction strength, andτ is the
correlation time of the response. This form has the advantage
that ê0(t) is the solution of an Ornstein process, i.e.,

whereêG(t) is an uncorrelated Gaussian random number with
the second moment

In previous work, the auxiliary equation forê0(t) has been treated
on a different footing then the iGLE with the use of a multiple-
time step scheme.22,23This approach has had the advantage that
the algorithm is presumably generalizable to arbitrary forms of
γ0, and it ensures that the random forces are properly correlated.

However, within the restriction of the exponential memory
kernel of eq 18, a well-known auxiliary equation may be used
instead that is also better suited to the fast numerical integrator
described in the previous section. Introducing the auxiliary
variable,

the iGLE of eq 16 may be rewritten in the form,37

whereêG is an uncorrelated Gaussian random number as before.
The ensemble averages over trajectories on this extended space
requires an average over initial conditions. The positions will
be specified below. The momenta are chosen from a Boltzmann
distribution. The auxiliary variablez(0) is chosen according to
an auxiliary Boltzmann distribution that is a Gaussian distribu-
tion with second moment determined by

The equations of motion over the extended space, eq 22, may
be Taylor expanded as in the previous section in order to express
them in the form necessary for the fast numerical integrator.
Because of the time dependence ing(t), the Taylor expansion
must now also include time derivatives. This results in several
additional terms. Nonetheless, the compact structure of eq 22
substantially reduces the number of nontrivial terms. In par-
ticular, all terms that would result in non-Gaussian correlations,
including the functional of the random noise, vanish at each
order in the expansion. The terms which do contribute and which

∑
l ) 1

Il ) k, (11)

Z1,i ≡ ∫0

h
dsêi(s). (12)

〈Z1,i(t1)Z1,i(t2)〉 ) (gi
0)2 δ(t1 - t2)h. (13)

Zj,i(h) ) ∫0

h
ds Z(j-1),i(s) (14)

xi
N(h) ) xi,det

N (h) + xi,ran
N (h), (15)

p̆ ) -V′(q) - ∫t dt′g(t)g(t′)γ0(t - t′)p(t′) + g(t)ê0(t), (16)

〈ê0(t1)ê0(t2)〉 ) 1
â

γ0(t1 - t2), (17)

γ0(t1 - t2) ) γ0(0)e-|t1-t2|/τ, (18)

ê̇0(t) ) - 1
τ
ê0 + êG(t), (19)

〈êG
2〉 )

2γ0(0)

âτ
. (20)

z≡ - ∫t dt′ g(t′)γ0(t - t′)p(t′) + ê0(t), (21)

q̆ ) p (22a)

p̆ ) -V′(q) + g(t)z (22b)

z̆ ) - z
τ

- γ0(0)g(t)p + êG, (22c)

〈z2(0)〉 ) 1
â

γ0(0). (23)
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did not appear in the earlier expansion of nonstationary SDEs
have the general form,

where j is a dummy index labeling the terms, andx(I ) is a
corresponding vector defined as in the previous section. Since
the expression inside the integral is composed of multiplication
of a Gaussian term with a smooth deterministic function, there
is no dependence on the type of the stochastic integral; hence,
this integral can be solved in standard fashion using integration
by parts.2

Collecting all the terms of the Taylor expansion up to the
fourth order inh gives, as in eq 15, a deterministic part in which
no stochastic terms appear and a stochastic part which includes
four Gaussian random noise terms of known form. The
stochastic contribution to each variable is

Performing the Taylor expansion gives an additional non-
Gaussian random noise term to the order ofh4 of the form,

In the underdamped regime, the contribution of this term is
smaller than the other deterministic variables by a factor ofγ/â.
Hence the algorithm may safely be considered to be better than
third order in accuracy regardless of the friction strength, and
it will be referred to loosely as (a weakly) fourth-order method.

B. Nonstationary Dynamics on the Double-Well.The
efficiency of the fast numerical algorithm has been explored
through the study of the energy relaxation of various systems
to its equipartition value. The limiting behavior is expected for
the time-dependent and space-dependent iGLE because the
Boltzmann distribution is a steady-state solution of the corre-
sponding GLE.38 In particular, for the LE, the relaxation is
known to behave as a single exponential.1 The same result has
also been obtained for space-dependent friction in the limits of
quadratic coupling and low friction.28 It is, however, not obvious
how the energy will relax in the time dependent problem.

To explore the accuracy and feasibility of the fourth-order
algorithm, we first study the energy relaxation in the double-
well potential,

for a g(t) represented by a switching function,

within the iGLE in eq 25c. This switching function has been
used in Ref 22 to describe a smooth change in the environment
from steady-state behavior at times far in the past (t f -∞) to
a different steady-state behavior at times far in the future
(t f +∞) due to a change in the system and solvent interaction.
The transition fromg(-∞) to g(∞) takes place over a finite
transition time,τg. The energy relaxation of a particle starting
from the barrier of the double-well potential has been integrated
using both the usual Euler method2 and the fourth-order
algorithm of this work. As shown in Figure 1, for small time
steps, both methods relax to equipartition similarly. Figure 1
also presents the step sizes for which each of the methods
experiences a breakdown. It can be seen that the fourth-order
method remains accurate for step sizes a few orders of
magnitude larger than that of the Euler method. The fourth-
order algorithm is accurate up to a step size ofh ) 0.2, whereas
the Euler method loses accuracy for step sizes larger thanh )
0.001.

A second model for the nonstationary friction behavior in a
double-well potential is that in which theg(t) is represented by
a power law in time,g ∝ tR. Such a form can be given a physical
interpretation. It has earlier been suggested that

wherex represents the length of a given growing polymer, and
R is a characteristic growth scaling exponent.23 This growth
may be further related to time through a scaling function,

during an unquenched growth regime. Combining these scaling
relations, provides the result,

for the characteristic growth in〈x〉 during an intermediate growth
regime. To avoid the nondissipative regimes att f -∞, the

Figure 1. Energy relaxation in a double-well potential with exponential
stationary friction kernel and nonstationary modulation ing set to a
switching function. The ensemble averages involve 5000 trajectories
all starting from the barrier. The parameters of the simulations areγ-∞

2

) 0,γ+∞
2 ) 10, τg ) 1, â ) 10, γ ) 1, τ ) 1. The Euler integration of

the SDE with step sizes ofh ) 0.001,h ) 0.01, andh ) 0.2 are
displayed as a solid, short-dashed and dotted curve, respectively. These
are compared to the long-dashed curve, which is the result of integration
of the SDE with the time-dependent fourth-order algorithm. As can be
seen, both methods converge for small enough step sizes for long time
to the equipartition value.

g ∝ 〈x〉R, (29)

〈x〉R ∝ tR′, (30)

g ∝ tR′, (31)

∏
j ) 1

N

{f j,x(I )
0 ∫0

h
dt [tkjZmj]}, (24)

qran ) (g0 + hğ0)Z3 - (2ğ0 +
g0

τ )Z4 (25a)

pran ) (g0 + ğ0h + 1
2
g̈0h

2) Z2 - (g0

τ
+ ğ0 +

ğ0

τ
h + g̈0h) Z3

(V′′g0 + γ0(0)g0
2 -

g0

τ2
-

ğ0

τ
- g̈0) Z4 (25b)

zran ) Z1 - 1
τ
Z2 - (γ0(0)g0

2 - 1

τ2
+ 2γ0(0)g0ğ0h) Z3

+ (2γ0(0)
g0

2

τ
- 1

τ3
+ 3γ0(0)g0ğ0) Z4. (25c)

g′(q)g(q) ∫0

h
dtZ3(t)Z1(t). (26)

V(q) ) q4 - 2q2, (27)

g(t)2 ) g2(-∞) + 1
2
[g2(∞) - g2(-∞)] [tanh

t
2τg], (28)
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nonstationary time dependence in the random force is taken to
be

for time t greater than zero and one otherwise. The scaling
exponents are taken from the set:R ∈ {.25, .5, 1}. Figure 2
displays the average energy relaxation of an ensemble of
trajectories started at the barrier.

As can be seen, the system always reaches equipartition. For
strong friction, the nature of the relaxation is far from
exponential. This is an outcome of the fact that kinetic energy
relaxation is much faster than the potential energy relaxation,
whereas the latter is slow when the diffusion process is slow.

Given that the fourth-order integrator is accurate for the iGLE,
it can be used to obtain other observables for nonstationary
reactive systems. In particular, the calculation of the rates of
time-dependent reactions or diffusion in time-dependent envi-
ronments are of current general interest. As a concrete example,
the escape rates in the double-well potential of eq 27 will be
calculated for the nonstationary time dependence in the random
force,

An accurate analytical expression39 for the reactive rates exist
for the (stationary and local) 1D LE and it has been used
successfully40 on the double-well potential. With the inclusion
of the time dependence in the friction, the reactive flux is no
longer constant and cannot be found with the known analytical
solutions. Furthermore, because the friction strength changes
in time, the conventional reactive flux method40 is not applicable.
Thus, the only way to calculate the reactive flux is the direct
integration of an ensemble of particles starting from equilibrium
in one of the wells and finding the rate with the relation,

at the so-called saddle times.41,42 Of course, this method

demands much longer integration time than the reactive flux
method but it is feasible because of the efficiency of the fast
fourth-order integrator. The rates for this process with various
power law friction strengths are presented in Figure 3. As can
be seen, the reaction rates follow the well-known turnover
picture39,40 but with an additional dependency on time.

IV. Space-Dependent Friction

A. Formalism. A second class of nonstationary friction
kernels that can be solved using the high-order scheme of this
work is that of the iGLE with space-dependent friction,

The use of an exponential friction kernel forγ0 as in eq 18
allows for the transformation of this system to an extended space
in analogy to the construction of eq 22. The equations of motion
in this extended space are32

whereêG andz are correlated as in eqs 20 and 23, respectively.
This construction has effectively transfered the iGLE into a
simpler set of three SDEs with additive noise. Such a trick can
be performed on any iGLE with colored (multiplicative) noise
in which the stationary memory kernel can be decomposed into
a sum of exponents. As this includes a large number of problems
of physical interest, the method is in fact more general than it
may have initially appeared.

After some algebra, the stochastic part of the integrated
variables is obtained:

Figure 2. Energy relaxation in a double-well potential with exponential
stationary friction kernel and nonstationary modulation ing set to a
power law in time,g(t) ) (1 + t)R. The ensemble averages involve
10 000 trajectories all starting from the barrier. The parameters areâ
) 5, γo(o) ) 1.0, andτ ) 3. The integration step size in the fourth-
order integrator ish ) 0.025. The solid, dotted, and dashed curve are
the results obtained for the scaling exponentR equal to 0.25, 0.5, and
1.0, respectively.

g(t) ) (1 + t)R, (32)

g(t) ) (.0001+ at)R. (33)

κ(t) ) 1
n1 - n2

d(n1 - n2)

dt
, (34)

Figure 3. Time-dependent reaction rates for the transition in a double
well from the right to left well at parameters as in Figure 2, but with
the nonstaionary part now equal tog(t) ) .(0001+ at)R. The numerical
integration is performed with 2 500 000 particles starting from the right
well at thermal equilibrium withâ ) 5, a ) 0.3,γo(o) ) 1.0, andτ )
3. The solid, dotted, and dashed curve are the results obtained for the
scaling exponentR equal to 0.25, 0.5, and 1.0, respectively. Conver-
gence has been achieved with step sizes of 0.25 in the first two cases
and 0.01 in the thid case.

p̆ ) -V′(q) - ∫t dt′g(q(t))g(q(t′))γ0(t - t′)p(t′) +

g(q(t))ê0(t). (35)

q̆ ) p (36a)

p̆ ) -V′(q) + g(q)z (36b)

z̆ ) - z
τ

- γ0(0)g(q)q̆ + êG (36c)
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While there seems to be an inflation in the number of terms as
compared to eq 25, most of the terms have a similar structure
and allow for economic algorithmic programming.

B. Nonstationary Dynamics with Periodic Space Depen-
dence.As before, the system dynamics may be modeled through
the use of a double-well potential. However, instead of using a
time-dependentg-function, in this case we use a space-dependent
one. In particular, we use a periodic form,

with the stationary part given by the exponential friction as
required by the assumptions above. The frequency of the space-
depence has been taken here to match the short-ranged periodic-
ity of the double-well insofar as the system will experience
maximal friction in the potential well and minimal friction at
the barrier. This assumption is physically realizable when the
confinement effects of the barrier influence the dynamics.35 (In
future work, we will explore the resonance behavior as a
function of different frequencies in the periodic friction.) The
relaxation of particles from an initial nonequilibrium distribution
at the barrier has been obtained using both the usual Euler
method2 and the fourth-order algorithm of this work. As may
be seen in Figure 4, both approaches are in good agreement,
although the fourth-order algorithm is substantially faster.

An alternate model for the system dynamics is that of a tilted
washboard potential, i.e., a sum of a periodic function and a
linear function in position. This potential has been used in our
group to model polymerization dynamics in the context of the
space- and time-dependent nonstationarity.23,24It has also been
studied by Dan et al.34 to model the mobility in spatially
inhomogeneous systems in the context of periodic space-
dependent friction to examine and describe the stochastic
resonances in the drift velocity. In this case, the friction is
explicitly taken to be proportional to the periodic component
of the potential with a specified phase delay. Dan et al.34 have
obtained an analytical expression for the mobility,

in the strong friction limit, where the GLE reduces to the
Smoluchowski equation, and found it to depend strongly on the
phase delay between the friction and the potential. To make
use of the fourth-order algorithm of this work, we first generalize

their local friction for the stationary part to be the exponential
friction with τ ) 0.1. For the potential,

the explicit form of the modulation in the nonstationary space
dependence in the random noise isg(q) ) [1 - λ cos(q + φ)].
Using the space-dependent integrator of eq 37c, we have
calculated the normalized mobilityµj ) γµ at several friction
strengths as a function of the phase are shown in Figure 5. This
normalized mobility does not depend on the friction strength.
In the overdamped case, we can see a strong dependence on
the phase with a structure similar to the case presented in Ref
34. There are only minor differences between the cases ofγ )

qran ) (g0 + hg′0p
0)Z3 - (2g′0p

0 +
g0

τ )Z4 (37a)

pran ) [g0 + g′0p0h + 1
2
g′0(-V′0 + g0z0)h

2 +
g′′0
2

p0
2h

2]Z2

-[g0

τ
+ g′0p0 + 1

τ
g′0p0h + g′0(V′0 - g0z0)h + g′′0p0

2h]Z3

-[g0V′′0 + γ0(0)g0
2 -

g0

τ2
-

g′p0

τ
+ g′0(V′0 - g0z0) - g′′0p0

2]Z4

(37b)

zran ) Z1 - 1
τ
Z2 -[γ0(0)g0

2 - 1

τ2
+ 2γ0(0)g0g′0p0h]Z3

+ [2γ0(0)

τ
g0

2 - 1

τ3
+ 3γ0(0)g0g′0p0]Z4. (37c)

g(q) ) sin2 (π2q) + ε, (38)

µ )
〈dq/dt〉

F
, (39)

Figure 4. Energy relaxation in a double-well potential with exponential
stationary friction kernel and a nonstationary modulation ing that is
explicitly space-dependent. The numerical integration is performed with
an initial nonequilibrium distribution of 5000 trajectories localized at
the barrier with thermalized momenta according toâ ) 5. (The
remaining parameters areγ ) 3, τ ) 1 andε ) 0.001.) The dashed
curve is the average relaxation obtained using the Euler method with
step sizeh ) 0.000 01; the bold curve is the result of the integration
using the fast algorithm with step sizeh ) 0.05.

Figure 5. The modified currentæ ) γ〈p〉 as a function of the phase
φ for the example in the text. The average current is obtained for an
initial nonequilibrium distribution of 5000 particles localized at the
barrier with thermalized momenta according toâ ) 1. (The remaining
parameters areλ ) 0.5, τ ) 0.1 and f ) 1.5.) The integration is
performed for large enough times that the current goes to an average
plateau value. The time step is taken to beh ) 0.025 forγ ) 0.2 and
γ ) 5 (represented by diamonds and circles, respectively) andh )
0.01 for γ ) 15 (represented by squares).

V(q) ) - cos(q) + Fq, (40)
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5 and γ ) 15, reflecting the degeneracy of the Langevin
equation to the Smoluchowski equation in the overdamped
regime. For the case ofγ ) 0.2, the friction is weak enough so
that the problem can no longer be solved with the analytical
method of Ref 34 when neglecting the inertia term. The
numerical results in Figure 5 demonstrate that even in the weak
friction limit, the mobility depends on the phase delay. This
dependence is much weaker than that found in the overdamped
case and is substantially different in its behavior. Although the
maximum and minimum are inside the [0,2π] interval in the
overdamped case, the maximum for the underdamped case is
at the edges of this interval. In summary, the use of the fourth-
order integrator has allowed us to accurately capture the behavior
over all friction strengths that was earlier seen in Ref 34 in the
high-friction limit.

V. Summary

Although the iGLE and the space dependent GLE have a
seemingly simple structure, an analytical solution is presently
not known; hence, a good numerical integrator is a matter of
necessity. In this work, a fourth-order numerical integration
scheme has been introduced that is appropriate for the solution
of a large class of stochastic differential equations, including
the space and time dependent iGLE with exponential memory
kernel. This class of SDEs have physical importance in the field
of nonstationary Brownian motion. Possible applications include
polymerization reactions and surface transport as has been
discussed in the text. The accuracy of the integrator has been
shown for both double-well and periodic potentials. The latter
also provided a case study of the resonant behavior between
the frequency of the potential and the solvent response through
a space-dependent potential.

It is easy to combine the two cases of sections III and IV in
order to obtain an integration scheme for problems with the
friction and random forces involving both time and space
coordinates. The algorithm presented here is fourth order in
accuracy, which is by far better than existing schemes which
are second order or less, and opens the possibilities of obtaining
numerical solutions in a reasonable amount of time. In
multidimensional problems where the solutions are usually not
stable, the accuracy of the fourth-order method should be
essential to obtain accurate and converged results for nontrivial
step sizes.

The fourth-order algorithm designed here for iGLE’s with a
stationary friction kernel for exponentially decaying memory
can be applied for larger classes of problems. Using the method
of continued fractions,1 an arbitrary friction kernel can be
expanded as a sum of exponentials. When the expansion
converges, the modified fourth-order algorithm for an iGLE with
exponential decaying stationary kernels can be used to solve
each of the corresponding SDEs. It is still a challenge to solve
problems with memory kernels, e.g., the Gaussian kernel and
the cutoff kernel, for which such an expansion does not
converge. But this may not be a significant loss in generality
as it has been shown that such kernels lead to unusual dynamics
as well as unusual thermodynamic behavior.43

Though not explored in this article, the current method may
also be useful in exploring the iGLE when the strength of the
random forces depends self-consistently on characteristic ob-
servables of a finite or infinite ensemble of tagged particles.23,24

Such a system is equivalent to a high-dimensional Langevin
equation composed of replicas of the Langevin equation that
are coupled by low-order terms. With the use of the fourth-
order method of this article, it may be possible to obtain

converged numerical results for this class of self-consistent
iGLE’s.
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